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Abstract: Existing HVAC systems involve little feedback from indoor occupants, resulting in unnecessary 
cooling/heating waste and high percentage of discomfort. In addition, large thermal preference variance 
amongst people requires the development of personal thermal comfort models, rather than group-based 
methodologies such as predicted mean vote (PMV). This study focuses on assessing wearable solutions with the 
aim to predict personal thermal preference. We collected physiological signals (e.g., skin temperature, heart 
rate) of 14 subjects (6 female and 8 male adults) and environmental parameters (e.g., air temperature, wind 
speed, solar radiation, precipitation) for two weeks (at least 20 hr/d) to infer personal real-time thermal 
preference. The subjects reported their real-time thermal sensation and preference using cell-phones 
approximately every hour. We trained a Random Forest algorithm using data collected from individuals to 
develop a personal comfort model with the objective to predict thermal preference. The results show that 
subjects expressed needs for “warmer” or “cooler” conditions at about 30% (from 21% to 88%) of their daily 
time on average, implying the strong demand for a personalized indoor thermal comfort. In addition, the 
personal comfort model using Random Forest can infer individual thermal preference with a mean accuracy of 
75% (53 - 93%) using physiological and environmental parameters, demonstrating the strengths of the proposed 
data-driven method. 
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1. Introduction 
Creating a thermally comfortable indoor environment for occupants can lead to improved job 
satisfaction, productivity and well-being. Only 40% of the occupant in US commercial 
buildings are satisfied with the thermal environment (Karmann et al., 2018). Perceived 
productivity was found reduced when thermal preference moved away from “no change” 
(McCartney and Humphreys, 2002). Incorporating occupants’ thermal comfort in the control 
of building systems thermal environment saves heating, ventilation, and air conditioning 
(HVAC) energy comsumption (Erickson and Cerpa, 2012; Hang-yat and Wang, 2013; Nguyen 
and Aiello, 2013; Nouvel and Alessi, 2012; Purdon et al., 2013; Sarkar et al., 2016).  

One challenge to non-intrusively incorporate each occupant’s feedback on the thermal 
environment is to accurately predict thermal comfort in the dynamic, non-uniform, and real 
environment. The most popular thermal comfort model, the predicted mean vote (PMV) and 
adaptive model, has been proved to have a low predicting power  (Humphreys and Fergus 
Nicol, 2002; Kim et al., 2018a). The effects of individual difference in physiological, 



psychological, and behavioral factors are not considered in these models. Rather, a personal 
comfort model is a new approach to thermal comfort modeling that predicts an individual’s 
thermal comfort response, instead of the average response of a large population (Kim et al., 
2018b). Personal comfort models have a much higher predicting power than PMV and 
adaptive model owning to additional consideration of personal factors (Kim et al., 2018a). The 
models can be based on environmental parameters (e.g., air temperature, location, relative 
humidity) (Cheung et al., 2017), occupant feedback (e.g., online voting like Comfy) 
(Ghahramani et al., 2015; Kim et al., 2018a), occupant behaviour (e.g., thermostat setpoints 
like Nest), and physiological parameters (e.g., skin temperature, heart rate) (Chaudhuri et al., 
2018; Choi and Loftness, 2012; Choi et al., 2012; Huang et al., 2015; Sim et al., 2016).  

Occupants’ physiological parameters could be measured by using infrared 
thermography (Ranjan and Scott, 2016) or wearable sensors (Ghahramani et al., 2016; Li et 
al., 2017a; Shen et al., 2012). The major challenges of infrared thermography and occupant 
behavior are either single parameter (e.g., skin temperature) tracking or difficulties in long-
term monitoring in a free-living environment. Security is also a concern. By contrast, wearable 
sensors that are capable of measuring physiological signals and other parameters without 
relying on stationary infrastructure, are suitable for the prediction of personal thermal 
comfort in real life. Other benefits include cost, market penetration, privacy and 
opportunities to be infused in health monitoring. Moreover, wearable fitness trackers have 
become broadly available, such as Fitbit (Fitbit Inc., U.S.), Apple Watch (Apple Inc., U.S.) and 
Garmin (Garmin Ltd., U.S.). The emerging sensing technology provides the opportunities to 
apply the measured data to infer thermal comfort. For instance, wearable sensors were 
deployed together with in-home environmental sensors to predict thermal comfort in 
households (Huang et al., 2015). Occupants’ real-time feedback on thermal preference was 
predicted by using physiological data (e.g., skin temperature, heart rate, activities) along with 
indoor environmental parameters (e.g., air temperature and humidity) and was incorporated 
into building system control, creating a human-in-the-loop system (Li et al., 2017). 

Capturing the transitions among different thermal environments were found a 
challenge by wearable sensors. Most recent studies on applying wearable sensors to predict 
thermal comfort were conducted with participants restrained in a laboratory (Chaudhuri et 
al., 2018; Ghahramani et al., 2016; Sim et al., 2016; Sugimoto, 2013). Furthermore, occupants’ 
diverse daily activities, such as cooking or commuting, have been rarely included in previous 
investigations. The feasibility and accuracy of personal thermal comfort prediction for real-
life wearers are still unclear. The knowledge gap could be addressed probably only by 
continuously tracking occupants for a long-term. 

In addition, it is worth attention that the accuracies of wearable sensors might cause 
uncertainties to thermal comfort inference. However, very few studies have reported the 
validation of sensors’ measuring accuracies. In a laboratory environment, physiological signals 
measured and environmental data by commercially-off-the-shelf sensors were applied to 
train an algorithm to calculate PMV (Abdallah et al., 2016). The study pointed out that existing 
sensors need to be improved to increase accuracy, which was also affirmed by a recent study 
(Barrios and Kleiminger, 2017).  

The objective of this study is to develop personal thermal comfort models using 
physiological and environmental data collected by wearable sensors. Compared to existing 
technologies, such non-intrusive solutions do not disturb occupants for survey input after 
personal comfort models have been trained. The models can be used for the control personal 



comfort systems but they can also be applied to general mechanical systems in buildings or 
vehicles. 

2. Methodology 
Different from group-average models such as the PMV and adaptive model, a personal model 
should be specifically developed for an occupant to account for the great variation in personal 
factors. Personal models might have various formats for different occupants. As such, 
personal models are likely inexplicitly determined using data-driven methods such as 
continuous training of machine learning algorithms over streaming data. Figure 1 displays the 
framework of personal thermal comfort modeling that can be used for building system 
control. 
  

 
Figure 1. Framework of personal thermal comfort modelling. (Adapted from Kim et al., 2018b) 

In this study, we collected and formatted physiological responses from human subjects 
and applied machine learning algorithms to train a personal thermal comfort model for each 
subject. Thermal sensation and preference data from surveys were utilized as ground truth 
for model development and evaluation.   

2.1. Subjects 
We initially recruited twenty subjects (half females and half males) from Berkeley and San 
Francisco through posted announcements and snowball sampling method. Most subjects 
were college students. The subjects were divided into four groups, A-D, corresponding to four 
sets of acquisition devices. The ID number in Table 1 refers to different subjects in each group. 
However, six of them did not complete the entire experiment that required participation for 
two weeks. Therefore, the final data-analysis has only considered 14 subjects (6 females and 
8 males). Table 1 shows the detailed anthropometrics of the subjects.  



Table 1. Anthropometrics of subjects in this study  

ID Sex Age 
Height 
(m) 

Weight 
(kg) BMI* 

Sensitivity to 
thermal 
environment† Participation time 

A1 Male 26 1.71 68 23.3 3.7 Nov. 28th - Dec. 12th, 
2016 

A2 Male 25 1.85 86 25.1 2.9 Apr. 2nd - 23th, 2017 

A4 Male 31 1.7 55 19.0 3.5 May 1st - 19th, 2017 

A5 Female 38 1.63 54 20.3 2 May 23rd - Jun. 6th, 
2017 

B1 Male 24 1.73 52 17.4 3.5 Oct. 17th - Nov.10th, 
2016 

B3 Female 28 1.73 86 28.7 3 Dec. 5th - 20th, 2016 

B6 Female 25 1.8 57 17.6 3.1 Apr. 5th - 23rd, 2017 

B8 Male 23 1.75 57 18.6 4 Apr. 30th - May, 17th, 
2017 

B9 Male 21 1.81 73 22.3 3 May 19th - Jun. 8th, 
2017 

C1 Female 48 1.63 57 21.5 3.7 Mar. 21st - Apr. 17th, 
2017 

C3 Female 20 1.65 52 19.1 2.5 May 14th - Jun. 28th, 
2017 

D1 Male 21 1.75 61 19.9 3 Dec. 2nd - 19th, 2016 

D2 Male 32 1.8 70 21.6 3 Apr. 23rd - May 8th, 
2017 

D3 Female 22 1.58 56 22.4 3 May 13th - Jun. 1st, 
2017 

*BMI: Body mass index = Weight/Height2 

† Sensitivity to thermal environment from a survey question (Please indicate how sensitive you think 
you are to thermal conditions): Much lower sensitivity (0); Much higher sensitivity (5). 

2.2. Questionnaires  
Subjects took an online survey developed on Qualtrics using a cell phone to report their “right-
now” thermal comfort. To reduce fatigue due to survey taking, subjects answered only three 
questions each time: 1) location (indoor or outdoor); 2) thermal sensation (continuous 
ASHRAE thermal sensation scale from cold <-3> to hot <3>); and 3) thermal preference 
(warmer, no change and cooler). The questions were randomly displayed on the survey 
platform (Figure 2). 



 

Figure 2. Online survey platform using Qualtrics 

2.3. Wearable sensors 
All the sensors are commercial and available on the market. The sensors were selected based 
on three criteria: 1) accuracy; 2) raw data access for research support; and 3) convenience to 
wear for 24/7.  Despite that commercial wrist-bands and smart watches are easily accessible 
and user-friendly, the accuracy or capacity of research support fail to meet the requirements 
of this study. As such, all the sensors in this study were validated to generate data with 
accuracies of research purposes according to literature (Gillinov et al., 2017; van Marken 
Lichtenbelt et al., 2006; Mourcou et al., 2015). For instance, Basis Peak (Intel, Corp., U.S.) and 
Fitbit Charge HR (Fitbit, Inc., U.S.) inaccurately measure heart rate during exercise (Wang et 
al., 2017). As such, we applied Polar H7 strap (Polar Electro, Ltd., Finland) to monitor heart 
rate every second because of the high validity compared to ECG (Cheatham et al., 2015). 
Additionally, since subjects wore sensors for almost 24/7, two of the authors participated in 
a preliminary study for approximately two weeks to ensure that the selected sensors meet 
the criteria in the timeframe of participation. 

Table 2 and Figure 3 describe the specification of the sensors and the wearing locations, 
respectively. Skin temperature at wrist and ankle was measured every minute by an iButton 
sensor (van Marken Lichtenbelt et al., 2006; Smith et al., 2010). In addition, we attached one 
iButton (Maxim Integrated Products, Inc., U.S.) sensor with the sensing side facing outside to 
a pin-badge to measure every minute the air temperature in the body proximity in order to 
capture transitions between different thermal environments. The badge was pinned at the 
lower pant (Figure 2) to reduce the influence of body thermal plume. Subjects took off pants 
with the sensor badge before sleep. The measured data represented air temperature where 
pants were located during sleep. A small-size cell-phone (POSH Mobile, Ltd., U.S.) in a wrist 
pocket measured accelerometer data to represent activity levels. The sample frequency was 
greater than 5 Hz, depending on the intensity of movement. Moreover, the cell-phone 
wirelessly uploaded heart rate data to the cloud.



 
Table 2.  Sensors to measure physiological data 

Model Accuracy Parameter measurement 

iButton- Maxim integrated DS 
1923 (Maxim Integrated 
Products, Inc., U.S.) 

± 0.2 °C after calibration 
Skin temperature and air 
temperature close to the 
body  

Polar H7 Bluetooth Smart 
Heart Rate Sensor (Polar 
Electro, Ltd., Finland) 

Concordance 
correlation coefficient, 
0.99 (Wang et al. 2017) 

Heart rate 

Cell phone POSH built app 
Micro X S240 (POSH Mobile, 
Ltd., U.S.) 

Not applicable 

Accelerometer data to 
represent metabolic rates. 
Server to receive heart rate 
data 

 
 

 
 

Figure 3. Sensors and wearing locations. 

2.4. Procedure for data collection 
Before participation, each subject had a one-hour training on the study procedure. The 
subjects were also asked to wear the sensors during the train to ensure that they were 
comfortable with them. A signed consent form approved by the institutional review board of 
University of California, Berkeley (CPHS #2016-09-9129) was obtained from each subject. 

The subjects wore all the sensors for at least 20 hr and took the survey (Figure 2) for at 
least 12 times per day. The total duration of the participation was 14 days.  We encouraged 
subjects to take the survey as many times as possible, especially when their thermal 
conditions and preferences altered, such as after working out or moving to a different thermal 
environment. The subjects received a text reminder to take the survey. Each subject was 
compensated with $350 (or more if taking more surveys) after the entire participation. 

 



Table 2. Parameters and features for the development of personal thermal comfort models 

Parameters Features 

Skin temperature 
at ankle and wrist 

Temperature gradient over 15 min before a vote 

Average temperature over 15 min before a vote 

Temperature gradient over 60 min before a vote 

Average temperature over 60 min before a vote 

Temperature difference between daily average and 15 min average 
before a vote 

Average skin temperature difference between wrist and ankle over 15 
min before a vote 

Difference between daily average outdoor and skin temperature 
averaged over 15 min before a vote 

Body proximity 
temperature 

Temperature gradient over 15 min before a vote 

Average temperature over 15 min before a vote 

Temperature gradient over 60 min before a vote 

Average temperature over 60 min before a vote 

Temperature difference between daily average and 15 min average 
before a vote 

Difference between daily average outdoor and body proximity 
temperature averaged over 15 min before a vote 

Heart rate 
Difference between daily and 15 min average before a vote 

Difference between daily and 60 min average before a vote 

Metabolism 

Variation of accelerometer data over 15 min before a vote 

Variation of accelerometer data over 60 min before a vote 

Location Indoor or outdoor 

Time Morning (0 - 12:00), afternoon (12:00 - 18:00), or evening (18:00 - 24:00) 

Weather 
Average outdoor temperature, humidity, wind, and precipitation over 60 
min before a vote 

 

2.5. Machine learning algorithm and feature selection 
Among the three surveyed questions (Figure 2), thermal preference is the most relevant 
parameter to HVAC system control because it explicitly describes which action the HVAC 
should take. This study aims to apply classification algorithms to develop a thermal comfort 
model for each subject to infer their thermal preference.  

Random Forest (RF) constructs a multitude of individual decision trees and predict 
mean outcomes from the average results of all the trees (Breiman, 2001). This technique, also 
known as “bagging”, is particularly powerful in the small data regime, because it effectively 
generates an “artificial” dataset for each individual learner based only on the limited available 
data (Breiman, 1996). Random Forest has been successfully applied for thermal preference 
classification (Huang et al., 2015).  



The features for model training consisted of physiological data, body-proximity 
temperature, weather (wind, solar radiation, temperature, humidity), location and time 
(Table 2). The derivatives (e.g., gradients and standard deviation) of the measured data were 
also considered. For instance, the negative gradient of skin temperatures of the extremities 
represented the drop of skin temperature, possibly indicating a cool thermal sensation (Wang 
et al., 2007). 

3. Results and Discussion 

3.1. Thermal sensation and preference 
The overall thermal sensation and preference of each unique subject are shown in Figure 4. 
The vote number during the entire participation was 275 ± 77 (mean ± standard deviation).  
Most of the thermal sensation votes (interquartile range) were between slightly cool and 
slightly warm. The mean thermal sensation for all subjects is close to neutrality (mean ± 
standard deviation: 0.06 ± 0.75). However, thermal sensation ranges are significantly 
different among subjects. For instance, the thermal sensation range of subject B1 (0.44 ± 1.16) 
was much smaller compared to subject B8 (0.33 ± 0.05). 

The subjects in this study preferred changing their thermal environment for about 30% 
(min = 21% and max = 88%) of the participation period, which suggests a strong demand for 
a personalized thermal comfort. 

 

 
 

Figure 4. Thermal sensation and preference for each subject 

3.2. Thermal preference prediction 
We trained a personal comfort model with thermal preference as the dependent for each 
subject. Table 3 summaries the overall classification of warmer, no change and cooler. The 
accuracy was calculated as the chance (in percentage) of predicting a thermal vote correctly. 
The average accuracy of all the subjects is 74 ± 13% (mean ± standard deviation) for the field 
experiments. It is worthy to notice that the accuracy increase with the increase of the data 
size, above 300 votes, the accuracy is on average 80%. The differences in the accuracies imply 
that the dominant features to predict thermal preference might be different for each subject. 
A further investigation on the contribution of each feature to the prediction accuracy is 
underway.  
 

Cooler No change Warmer

P
e

rc
e

n
ta

g
e

 (
%

)

100

75

50

25

0

Subject ID
D2 B8 B3A1D1B1A2C1A4D3C3B9B6A5

Hot

Cool

Slightly 

     cool

Neutral

Slightly

  warm

Warm

Cold

Subject ID
D2 B8 B3A1D1B1A2C1A4D3C3B9B6A5



 
 

Table 3. Overall classification of warmer (W), no change (NC) and cooler (C) for each subject  

ID 
Data 
size 

True preference: 
Warmer 

True preference: No 
change 

True preference: 
Cooler Overall 

accuracy (%) 

W* NC* C* W* NC* C* W* NC* C* 

A1 152 28 29 0 27 51 0 5 10 2 53 

B3 242 98 8 15 41 8 3 40 3 26 55 

A2 253 2 36 0 1 126 16 0 54 18 58 

D1 156 15 37 0 13 86 0 0 3 2 66 

C1 256 11 26 1 12 136 11 2 34 23 66 

B1 271 16 57 0 9 160 3 1 18 7 68 

B6 393 2 39 0 0 264 3 0 77 8 70 

B9 261 10 20 0 9 197 3 0 19 3 81 

C3 399 14 34 0 5 295 3 0 35 13 81 

D2 198 0 2 0 0 129 5 0 24 38 84 

A5 270 0 19 0 1 232 2 0 16 0 86 

D3 322 12 33 0 0 265 0 0 9 3 87 

A4 323 13 28 5 2 215 0 1 1 58 89 

B8 353 9 12 0 2 304 1 0 9 16 93 

*Predicted thermal preference: Warmer (W); No change (NC); Cooler (C) 

 
In this study, the thermal comfort learning method based on Random Forest requires 

the collection of a sufficiently large labelled dataset for representation of common scenarios 
and generalization to unknown situations. This poses a practical challenge, because people 
may be reluctant to report their thermal comfort due to weariness. The authors will be 
developing data-efficient algorithms that alleviate this stringent requirement. One promising 
direction is to train the classifiers with high-level heuristic rules rather than low-level labels, 
a form known as “weak supervision” (Jin, 2017). The idea has been applied to occupancy 
detection based on smart meter data by leveraging common work schedules (Jin et al., 2017). 
Similarly, for thermal comfort, heuristics such as “I typically feel cold at night” or “I usually 
feel hot after running” can be readily encoded into noisy estimates of thermal comfort labels 
to initiate weakly supervised learning. This can potentially enable large-scale deployment of 
the proposed method of thermal comfort sensing. 

4. Conclusions 
We used wearable sensors to track real-time physiological signals and environmental data for 
almost 24/7 for each subject. The collected information was trained by a Random Forest 
algorithm to develop personal thermal comfort model. The subjects’ perceived thermal 
comfort was also recorded as ground true for the model development and validation. We are 



able to predict personal thermal preference with an average accuracy of 75% (53 - 93%) based 
on physiological signals (skin temperatures at wrist and ankle, heart rates, and activity levels) 
and environmental data. The results imply that wearable sensors can be suitable tools to infer 
thermal comfort in the free-living environment. In the future, we will explore more features 
from the sample data and more robust algorithms to reduce the requirement of survey inputs 
during the training period.  
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